Part Number Hot Search : 
M2114 SHD11 BST76A D5702 YM3292 D5V0S D5702 4GBJ801
Product Description
Full Text Search
 

To Download IRLBA1304PPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  
hexfet   power mosfet the hexfet ? is the most popular power mosfet in the world. this particular hexfet ? is in the super220 tm and has the same outline and pinout as the industry standard to-220. it has increased current handlingcapability over both the to-220 and the much larger to-247 package. this makes it ideal to reduce component count in multiparalled to-220 applications, reduce system power dissipation, upgrade existing designs or have to-247 performance in a to-220 outline. this package has also been designed to meet automotive qualification standard q101. s d g parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 185, pkg limited to 95a* i d @ t c = 100c continuous drain current, v gs @ 10v 130, pkg limited to 95a* a i dm pulsed drain current  740 p d @t c = 25c power dissipation 300 w linear derating factor 2.0 w/c v gs gate-to-source voltage 16 v e as single pulse avalanche energy  1160 mj i ar avalanche current  100 a e ar repetitive avalanche energy  30 mj dv/dt peak diode recovery dv/dt  5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c recommended clip force 20 n 
    parameter typ. max. units r jc junction-to-case CCC 0.5 r cs case-to-sink, flat, greased surface 0.5 CCC c/w r ja junction-to-ambient CCC 58 thermal resistance v dss = 40v r ds(on) = 0.004 ? i d = 185a   logic-level gate drive  ultra low on-resistance  same outline as to-220  50% greater current in typ.application conditions vs. to-220  fully avalanche rated o purchase irlba1304/p for solder plated option.  lead-free    09/20/04 www.irf.com 1     current capability in normal application, see fig.9.  downloaded from: http:///

2 www.irf.com   repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 )  i sd 110a, di/dt 170a/s, v dd v (br)dss , t j 175c    starting t j = 25c, l = 230h r g = 25 ? , i as = 100a. (see figure 12)  pulse width 300s; duty cycle 2%. s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode)  CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 110a, v gs = 0v  t rr reverse recovery time CCC 100 150 ns t j = 25c, i f = 110a q rr reverse recoverycharge CCC 250 380 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 185* 740  parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 CCC CCC v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.043 CCC v/c reference to 25c, i d = 1ma CCC CCC 0.0040 v gs = 10v, i d = 110a  CCC CCC 0.0065 v gs = 4.5v, i d = 93  v gs(th) gate threshold voltage 1.0 CCC CCC v v ds = v gs , i d = 250a g fs forward transconductance 120 CCC CCC s v ds = 25v, i d = 110a CCC CCC 25 a v ds = 40v, v gs = 0v CCC CCC 250 v ds = 32v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 16v gate-to-source reverse leakage CCC CCC -100 na v gs = -16v q g total gate charge CCC CCC 140 i d = 110a q gs gate-to-source charge CCC CCC 39 nc v ds = 32v q gd gate-to-drain ("miller") charge CCC CCC 79 v gs = 4.5v, see fig. 6 and 13  t d(on) turn-on delay time CCC 21 CCC v dd = 20v t r rise time CCC 350 CCC i d = 110a t d(off) turn-off delay time CCC 45 CCC r g = 0.9 ? t f fall time CCC 103 CCC r d = 0.18 ? ,see fig. 10  between lead, CCC CCC 6mm (0.25in.)from package and center of die contact c iss input capacitance CCC 7660 CCC v gs = 0v c oss output capacitance CCC 2150 CCC pf v ds = 25v c rss reverse transfer capacitance CCC 460 CCC ? = 1.0mhz, see fig. 5 electrical characteristics @ t j = 25c (unless otherwise specified) nh i gss s d g l s internal source inductance CCC 5.0 CCC r ds(on) static drain-to-source on-resistance l d internal drain inductance  2.0 i dss drain-to-source leakage current ? downloaded from: http:///

www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 1000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 5.0v 4.5v 3.5v 3.0v 2.7v 2.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 2.5v 0.1 1 10 100 1000 2.0 4.0 6.0 8.0 10.0 v = 25v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 5.0v 4.5v 3.5v 3.0v 2.7v 2.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 2.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 170a downloaded from: http:///

4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 2000 4000 6000 8000 10000 12000 v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd c iss c oss c rss 0 40 80 120 160 200 0 3 6 9 12 15 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 110a v = 8v ds v = 20v ds v = 32v ds 10 100 1000 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 10 100 1000 10000 1 10 100 operation in this area limited by r ds(on) single pulse t t = 175 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms downloaded from: http:///

www.irf.com 5 fig 10a. switching time test circuit v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1     0.1 %        
  + -   fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 0 40 80 120 160 200 t , case temperature ( c) i , drain current (a) c d limited by package 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) downloaded from: http:///

6 www.irf.com q g q gs q gd v g charge d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  
fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 175 0 500 1000 1500 2000 2500 3000 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 41a 71a 100a downloaded from: http:///

www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfets        
              ?   ?    ? !  "#$$ ?  %   
&""& ? '(!"  ? )"*  ? '+!" &"     downloaded from: http:///

8 www.irf.com data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/04 2x a 123 3x 0.25 [.010] b a b 4x 4 0.2 5 [ 3.00 [.118] 2.50 [.099] 14.50 [.570] 13.00 [.512] 4.00 [.157] 3.50 [.138] 1.30 [.051] 0.90 [.036] 2.55 [.100] 1.00 [.039] 0.70 [.028] 5.00 [.196] 4.00 [.158] 11.00 [.433] 10.00 [.394] 1.50 [.059] 0.50 [.020] 15.00 [.590] 14.00 [.552] 9.00 [. 8.00 [. 13.50 [. 12.50 [.   




 super-220 (to-273aa) part marking information top example: this is an irfba22n50a with assembly lot code 1789 assembly lot code international rectifier logo 89 irfba22n50a 17 year 7 = 1997 line c week 19 date code part number assembled on ww 19, 1997 in the assembly line "c" 719c note: "p" in assembly line position indicates "lead-free" downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRLBA1304PPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X